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Abstract

Objective: To examine the association between air pollution and diabetes prevalence in the 

United States, 2002 to 2008.

Methods: Annual average particulate matter (PM2.5) and ozone concentrations were calculated 

using daily county-level data from the CDC’s Tracking Network. Individual-level outcome 

and covariate data were obtained from the Centers for Disease Control and Prevention (CDC) 

Behavioral Risk Factor Surveillance System for 862,519 individuals. We used Poisson regression 

analyses to examine associations between each air pollutant (per 10-unit increase) with diabetes, 

including regional sub-analyses. Analyses were adjusted for year, age, sex, race, ethnicity, 

education, income, smoking status, body mass index, exercise, and asthma.

Results: Positive associations between each pollutant and diabetes were found (PM2.5: 

prevalence ratio [PR] = 1.10; 95% confidence interval [CI] = 1.03, 1.17; ozone: PR = 1.06; 95% 

CI = 1.03, 1.09). There was limited evidence of effect modification by region.

Conclusions: Interventions to reduce ambient air pollution may help alleviate the diabetes 

burden in the US.
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Diabetes mellitus (diabetes) is one of the most prevalent chronic diseases in the United 

States and adversely impacts individuals’ quality of life and the nation’s economy.1,2 In 

the United States, the estimated prevalence of diabetes is 9.4%.3 Of those with diabetes, 

less than 5% have Type 1, gestational, monogenic, or cystic fibrosis-related diabetes; the 

remaining 95% have Type 2 diabetes.3,4 Although established risk factors for Type 2 

diabetes include age, race/ethnicity, obesity, physical inactivity, and an unhealthy diet,3,5,6 

the potential impact of environmental exposures, such as air pollution, have not been 

thoroughly investigated.7

Two of the most ubiquitous air pollutants are fine particulate matter (PM2.5) and ozone, 

both of which may enter the alveoli of the respiratory system and induce adverse health 

effects.8–11 PM2.5 is a heterogeneous mix of particles less than 2.5 μm in diameter 

including both primary particles emitted directly into the environment (eg, via automobile 

exhaust) and secondary particles formed in the environment due to chemical reactions 

among atmospheric gases.11 The composition of PM2.5 varies by region and season, 

including components such as sulfates and nitrates, organic and elemental carbon, liquid 

droplets, metals, polycyclic aromatic hydrocarbons (PAHs), and even allergens.11,12 Unlike 

PM2.5, ozone is a secondary pollutant created from a chemical reaction between NOx and 

volatile organic compounds (VOCs) in the presence of sunlight; VOCs are released into 

the atmosphere from industrial, commercial, residential facilities, and traffic.12,13 Ozone 

concentrations also vary across US regions and seasons with higher concentrations occurring 

in regions with higher population density and during the summer months.12

In animal studies, exposure to PM2.5 and ozone have been associated with an array of effects 

including pro-inflammatory responses, increased insulin resistance, oxidative stress, and 

glucose intolerance which lead to metabolic dysregulation, a precursor to diabetes.8,14–19 

Previous epidemiologic studies have also suggested that exposure to PM2.5 and ozone 

may increase the risk of diabetes. Multiple meta-analyses investigating the association 

between PM2.5 and diabetes report positive associations.20–26 Most of these studies focused 

on incident diabetes. Recent studies have also identified positive associations between 

exposure to residential-level ambient PM2.5 and increased clinical indicators of diabetes 

(eg, HbA1c and fasting blood glucose).27–32 Moreover, several studies investigating chronic 

exposure to ambient PM2.5 and diabetes also found positive associations,28,33–40 but not all 

associations were statistically significant.41 However, Coogan et al42 found little support for 

the association of PM2.5 exposure and diabetes incidence (hazard ratio [HR] = 0.99; 95% 

confidence interval [CI] = 0.90, 1.09). Similarly, Renzi et al43 also found little support of 

an association between PM2.5 and diabetes incidence (odds ratio [OR] = 0.996; 95% CI = 

0.972, 1.020) or prevalence (OR 0.992; = 95% CI 0.970, 1.000). On the other hand, Pearson 

et al38 found an increase in diabetes prevalence associated with a 10 μg/m3 increase in 

ambient PM2.5 exposures for both 2004 (β = 0.77; 95% CI = 0.39, 1.25) and 2005 (β = 0.81; 

95% CI = 0.48, 1.07). Overall, the evidence from prior studies suggests that increases in 

PM2.5 may have an impact on diabetes. Still, the evidence is, at best, inconclusive.

Fewer studies have investigated the association between ozone and diabetes. In a recent 

study, Jerrett et al44 identified a positive association between census tract-level long-term 

average ambient ozone and type 2 diabetes incidence among African American women 
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in 56 metropolitan areas within the United States. While this study was novel, it was 

limited to only African American women. Although Renzi et al43 found no association 

between ozone and type 2 diabetes prevalence, they did report a positive association with 

incidence of type 2 diabetes. However, this study was conducted among an Italian cohort 

and may not be generalizable to US populations. Additional positive associations between 

acute area-level ozone exposures and diabetes mortality have been identified in at least two 

previous studies.45,46 One of these examined mortality from diabetes based on diagnosis 

prior to death as well as mortality records,45 while the other was based only on mortality 

records of individuals living in Eastern Massachusetts.46 Additionally, among a subgroup 

of non-hospitalized diabetics, Stafoggia et al47 reported increased diabetes-related mortality 

in association with increases in acute ambient ozone exposure. Using Medicare data to 

determine cause of mortality for a variety of chronic conditions, Zanobetti et al48 also 

found a positive association between long-term ozone exposure and diabetes mortality, but 

only between May and September. While these studies provide evidence of an association 

between ozone and diabetes mortality, the effects of pollution on prevalence may not 

necessarily be the same as those on mortality. To our knowledge, ours is the first study 

to explore the association between ozone and diabetes prevalence in the United States.

Given the burden of diabetes in the United States and the paucity of research addressing 

the association of PM2.5 and ozone with diabetes prevalence, further investigation of 

the relationship of PM2.5 and ozone with diabetes prevalence is merited. Therefore, we 

conducted an epidemiologic study with the following goals: (1) estimate the association 

of annual county-level average estimates of ambient PM2.5 and ozone concentrations with 

prevalent cases of diabetes in the United States, and (2) determine whether the association 

between annual county-level average estimates of PM2.5 and ozone concentrations with 

diabetes differs by US region.

MATERIALS AND METHODS

The present study includes data collected from 1,061,395 adults 18 years and older, from 

372 unique US counties from 2002 to 2008, from the behavioral risk factor surveillance 

system (BRFSS) selected metropolitan/micropolitan area risk trends (SMART BRFSS) data, 

maintained by the US Centers for Disease Control and Prevention (CDC). Although BRFSS 

is a survey conducted at the state level, SMART BRFSS focuses on urban areas and only 

includes data for US counties and cities with 500 or more respondents.49,50 To conduct 

the survey, participants in each year between 2002 and 2008 were identified by using a 

disproportionate stratified sampling (DSS) design, an efficient type of complex random 

sampling.51 Given the random sample of participants each year, while it is possible that 

the same participants could be contacted, BRFSS data are not intended to have repeated 

measures on individuals, and it is more likely that different participants are selected each 

year. Ethical approval for this study was obtained from The University of Texas Health 

Science Center at Houston Committee for the Protection of Human Subjects.

Prevalent cases of diabetes were identified based on the standard core question in BRFSS: 

“Have you ever been told by a doctor that you have diabetes?”.51 If an individual responded 

“yes,” they were considered to have diabetes, with the exception of the following response: 
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“yes, but female told only during pregnancy,” as this response is indicative of gestational 

diabetes. Data on pre-diabetes were also available for the years 2004 to 2008. During these 

years, “pre-diabetic” and “borderline diabetic” were volunteered response options to the 

question regarding diagnosis of diabetes. If a respondent indicated they were pre-diabetic 

or borderline diabetic, they were recorded as having pre-diabetes. For the present analysis, 

responses “don’t know/not sure” or “refused” were classified as missing.

Concentrations of air pollutants were obtained though the CDC’s Downscaler model which 

relates the US EPA’s Air Quality System (AQS) monitoring stations’ data to modeled 12 km 

grid cell data generated by the US EPA’s Community Multiscale Air Quality Modeling 

System (CMAQ).52–54 Although AQS data provides less biased estimates of ambient 

concentrations of pollutants where monitors are present, monitoring data are often sparse 

or not available, resulting in missing data.53 While CMAQ estimates are comprehensive and 

are available for the entire conterminous United States in 12 km grid cells, they provide 

more biased, uncertain results of the true concentration of ambient air pollutants.53 Thus, 

the Downscaler approach regresses observed AQS monitoring data on modeled CMAQ 

data using a Bayesian framework, accounting for spatio-temporal variation.53 Although the 

Downscaler model does not account for ambient temperature or land use, the inclusion 

of both the AQS and the CMAQ data improves upon use of either data source alone and 

provides less biased results for census tract centroids.53 These centroid measures can also 

be “upscaled” to larger spatial resolutions (eg, the county-level) and aggregated to any 

temporal summary without introducing additional bias.53 Additionally, when comparing the 

Downscaler model to other predictive models, the Downscaler model reduces the mean 

square error (MSE = 53.1) as compared with ordinary kriging (MSE = 60.9).52 Thus, using 

data from the Downscaler model, exposure data for each year from 2002 to 2008 in the 

current study were based on annual county-level averages of either: (1) daily estimates of 

PM2.5 or (2) daily estimates of the 8-hour maximum ozone concentration. To upscale the 

data to the county-level, daily census-tract centroid estimates were used to determine daily 

population-weighted county-level estimates at the centroid of the county using the following 

equation52:

Countyestimatek = ∑
j = 1

nk
ConcCTj, k ×

PopCTj, k

∑j = 1
nk PopCTj, k

where County estimatek = Daily Downscaler (DS) estimate for a pollutant 

at the county level for county k; ConcCT = Daily DS estimate for a 

pollutant at the census tract level for a tract j located within county k; and 

PopCTj, k = Total population for a census tract j located within countyk; nk = number of census 

tracts in county k.52 These daily estimates taken over a 12-month period were then averaged 

across each year to calculate annual average concentrations of PM2.5 and ozone for each 

county. These annual county-level average estimates of PM2.5 and ozone concentrations 

were used to assign average annual exposure estimates to individuals in the present study.
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We considered previously established risk factors for diabetes as covariates.21,34,38,47,48,55,56 

The following individual-level variables were obtained from SMART BRFSS: sex (male, 

female), age (in years), race (white, black, Asian, other), ethnicity (Hispanic, non-Hispanic), 

education (more than high school, high school or GED, less than high school), annual 

household income (more than or equal to $75,000; $50,000 to $74,999; $35,000 to $49,999; 

less than $35,000), smoking status (never, former, current), exercise (yes, no), body mass 

index (BMI, in kg/m2), and current asthma (yes, no). Exercise was self-reported and based 

on whether the individual participated in any physical activity or exercise in the past 

month outside of their regular job and was recorded as “yes,” “no,” “don’t know/not sure,” 

or “refused.” (For the purposes of this study, “don’t know/not sure” or “refused” were 

classified as missing.) BMI was calculated using self-reported height (m) and weight (kg). A 

total of 314 individuals were excluded based on the following improbable height or weight 

values: height less than 1.2 m (n = 236) or more than 2.5 m (n = 1); weight less than 

28 kg (n = 58) or more than 250 kg (n = 29). (Note that an individual may have been 

counted in more than one of these exclusion criterion.) Additionally, 197,985 individuals 

were excluded because they were missing data for diabetes status (n = 1,166), age (n = 

10,628), race (n = 12,128), ethnicity (n = 4,766), education (n = 3,065), annual household 

income (n = 143,918), smoking status (n = 4,329), BMI (n = 52,453), exercise (n = 1,000), 

and/or asthma (n = 6,146). (Note that an individual may have been missing in one or 

more of the above exclusion categories.) After exclusions, a total of 862,519 (81.3% of the 

original sample) individuals remained for analyses. Of the 862,519 individuals remaining, 

76,780 had diabetes. After accounting for the survey design and adjusting for age using 

the US Census 2000 population, the diabetes prevalence in the current study was 7.5%, 

which closely reflects the age-adjusted percentage of diabetes prevalence in the adult US 

population between 2002 and 2008 (6.6% to 7.9%, respectively).57

Poisson regression was used to analyze the association of diabetes prevalence with annual 

county-level average PM2.5 and ozone concentrations, separately. Since median annual 

county-level average air pollutant concentrations for each pollutant varied by year, the initial 

model was adjusted by year; subsequently, all covariates were added to the fully-adjusted 

model. All models were clustered by county to account for the potential within-county 

correlation of individual demographic characteristics. To determine if a robust variance 

estimator was necessary to account for over-dispersion, the mean and variance of our data 

was compared and model fit was assessed via a goodness-of-fit test. Since approximately 

19% of our total observations included missing data, and the majority of the missing values 

arose due to income (~14%), we conducted a sensitivity analysis using multiple imputation 

(MI) whereby we imputed 20 datasets for missing values of income using a Markov Chain 

Monte Carlo procedure for categorical data58,59 and re-ran the adjusted models. To explore 

regional differences in the association between air pollution exposures and diabetes, we 

stratified the fully adjusted models by the four US regions defined by the US Census Bureau 

(ie, Northeast, Midwest, South, and West).60 We also assessed whether interaction was 

present between each region and PM2.5 or ozone by including interaction terms in the fully-

adjusted models. To explore effect modification, we stratified the adjusted models by sex, 

race, and age (18 to 34, 35 to 44, 45 to 54, 55 to 64, more than or equal to 65). Prevalence 

Hernandez et al. Page 5

J Occup Environ Med. Author manuscript; available in PMC 2022 February 17.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



ratios (PR) and 95% CI were computed. All results are based on a 10-unit increase in 

county-level estimated PM2.5 (μg/m3) or ozone (parts per billion, ppb) concentrations.

We also conducted several sensitivity analyses. We applied survey weights to the fully-

adjusted model to account for the complex survey design of BRFSS. Since SMART BRFSS 

county-level weights for each respondent apply only to a particular year and sample, and 

the data in the present study spanned multiple years, new weights were created. To create 

new weights that would accommodate the multiple years, we followed recommendations 

from Texas BRFSS61 and recalculated the yearly SMART BRFSS weights by multiplying 

the quotient of the sample size of each year and the total sample size (2002 to 2008) by the 

original county weight in SMART BRFSS.

CVD and diabetes are often comorbid conditions, and as a result, CVD may influence 

the association between air pollution and diabetes.62 Thus, we analyzed the inclusion of 

CVD into the fully adjusted model. From 2002 to 2004, CVD questions were part of an 

optional module in BRFSS and were only asked in a limited number of states. From 2005 

onwards the CVD questions were added to the core questionnaire for all states. Thus, CVD 

information was only available for a subset of BRFSS subjects in the study timeframe for 

which a composite CVD variable (yes, no) was created for the analysis. Among the subset of 

subjects with information on CVD and complete covariate data (n = 648,548), we examined 

whether the inclusion of this variable in the fully-adjusted model impacted the estimation of 

the association of either PM2.5 or ozone with diabetes.

We examined whether the addition of individuals classified as having pre-diabetes/

borderline diabetes to the diabetes case group in the fully-adjusted model impacted results. 

Finally, we simultaneously included both PM2.5 and ozone in unweighted and weighted 

models to assess if the presence of one pollutant influenced the association of the other with 

diabetes.

Statistical significance was declared at P < 0.05 in all analyses. Analyses were conducted 

using Stata © (version 13.0, College Station, TX), including survey data commands to 

account for the complex survey design when appropriate. Figures were produced using 

ArcGIS © (version 10.2, ESRI, Redlands, CA).

RESULTS

The majority of individuals included in this study were female (61.8%), white (81.3%), non-

Hispanic (91.8%), had greater than a high school education (64.3%), and were overweight or 

obese (57.2%) (Table 1). The distribution of characteristics was generally similar among 

subjects with diabetes, with some exceptions. For example, compared with the study 

population, a larger proportion of diabetics were 65 or older (45.5%), had less than a high 

school education (15.7%), had an annual household income of less than $35,000 (48.3%), 

had a BMI 30.00 kg/m2 or greater (46.9%), did not exercise within the past month (38.8%), 

or had CVD (27.6%). Additionally, fewer diabetics were in the 18 to 34 age group (3.0%), 

had an annual household income of $75,000 or greater (12.5%), or a BMI between 18.50 

and 24.99 kg/m2 (15.3%) compared with the study population. Asthma and CVD were less 
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prevalent in the total study population (8.7% and 10.0%, respectively) than among diabetics 

(12.5% and 27.6%, respectively). No marked differences in the distribution of covariates 

were observed between individuals with pre-diabetes and those with diabetes (data not 

shown).

Figures 1 and 2 show the distribution of PM2.5 and ozone concentrations across the United 

States and in SMART counties included in this study. The overall median concentration of 

PM2.5 was 10.8 μg/m3 (interquartile range (IQR) = 8.6, 12.4) in the entire United States and 

11.2 μg/m3 (IQR = 9.3, 13.1) among SMART counties. The median concentration of ozone 

was 40.9 ppb (IQR = 38.6, 43.1) in the entire United States and 39.7 ppb (IQR = 36.9, 42.4) 

among SMART counties.

When considering SMART counties only, we found statistically significant differences in 

median annual county-level average concentrations of PM2.5 and ozone concentrations by 

region (P < 0.001) (data not shown). Specifically, we found the median of the annual 

county-level average concentrations for PM2.5 was highest in the South (12.4 μg/m3) and 

ozone concentrations were highest in the West (42.2 ppb). The lowest concentrations among 

SMART counties were found in the West for PM2.5 (8.6 μg/m3) and the Midwest for ozone 

(36.6 ppb).

A positive association was found between annual county-level estimates of PM2.5 

concentration and diabetes based on the initial model (PR = 1.32; CI = 1.19, 1.47) (Table 

2). This association was attenuated in the fully-adjusted model (PR = 1.10; 95% CI = 1.03, 

1.17). For PM2.5, we determined that the inclusion of race in the fully-adjusted model was 

driving the attenuation of the effect estimate. However, for ozone, the effect estimate was 

not appreciably affected by inclusion of any specific covariate into the model. A positive, 

but weak, association was found between annual county-level ozone concentrations and 

prevalence of diabetes in the initial model (PR = 1.05; 95% CI = 0.98, 1.12). The addition of 

covariates in the fully-adjusted model resulted in a similar, but more precise estimate of the 

association between ozone and diabetes (PR = 1.06; 95% CI = 1.03, 1.09). Since our data 

for diabetes indicated that the mean (0.092) approximately equaled the variance (0.084), 

including the robust variance estimator did not improve model fit (goodness-of-fit test 

P-value >0.05). As a result, we chose to present results from the most parsimonious model, 

the model without the robust option. Estimates from the multiple imputed dataset (imputing 

missing values of income) did not change the results for ozone (pooled MI estimate: PR = 

1.06; 95% CI = 1.03, 1.09) and only marginally decreased the estimate for PM2.5 (pooled MI 

estimate: PR = 1.08; 95% CI = 1.02, 1.15).

Few regional differences in the associations between county-level estimates of air pollution 

and prevalence of diabetes were found, indicating there was limited evidence of effect 

modification by region (Table 3). In separate models, we assessed whether there was 

interaction between region and PM2.5 or ozone, however, the estimates for the interaction 

terms were not statistically significant (P > 0.05) (data not shown). Based on the stratified 

models, we found little evidence of effect modification of the association between ozone 

and diabetes for sex, race, or age (Table 4). Similarly, effect modification of the association 

between PM2.5 and diabetes was assessed by stratifying by sex, race, or age. We found only 
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limited evidence of effect modification, with slightly stronger associations among males, 

white and Asian individuals, as well as the youngest age group18–34 and those aged 55 to 64, 

though many estimates were imprecise (Table 4).

The application of survey weights to the fully-adjusted model attenuated the association 

between annual estimated county-level PM2.5 and diabetes (see Table 5). Weighted analysis 

of the association between annual estimated county-level ozone concentrations and diabetes 

resulted in slightly stronger association (see Table 5). Additional sensitivity analyses 

including the analysis of the diabetes plus pre-diabetes group, adjusting for CVD, and 

investigating the association of each of the air pollutants with diabetes in unweighted and 

weighted models (data not shown) did not meaningfully deviate from the main results 

presented in Table 2.

DISCUSSION

We found evidence of a moderate positive association between annual county-level average 

PM2.5 concentration and diabetes prevalence in large urban areas of the contiguous United 

States, from 2002 to 2008, which is consistent with previous studies.27,28,35,38 We also 

found a weak positive association between annual county-level concentrations of ozone and 

prevalence of diabetes, an association that has been insufficiently studied in the existing 

literature.

Previous studies have investigated the association between PM2.5 and diabetes prevalence 

by relying on county-level estimates of covariates.35,38 However, more recent studies have 

investigated the association between PM2.5 concentrations and diabetes prevalence and/or 

related outcomes (eg, increased HbA1c or fasting blood glucose) using individual- and 

neighborhood-level covariates.27–29,39,43,63,64 Similarly, our study utilized individual-level 

diabetes and covariate data rather than area-level estimates, which reduces the potential for 

residual confounding.

Of the most recent studies investigating the association between PM2.5 and diabetes as well 

as diabetes-related outcomes, only two have focused on populations in the United States. 

Peng et al29 found an association between each interquartile increase in PM2.5 concentration 

and higher fasting blood glucose levels among non-diabetics, while Honda et al27 found 

associations between an interquartile range increase of PM2.5 and diabetes prevalence as 

well as increased levels of HbA1c. Although these are both longitudinal studies and the 

current study is cross-sectional, the larger sample size in our study allows for increased 

precision of the estimates in comparison to previous studies. The current study also has a 

broader age range (18 and older) than the Peng et al29 and Honda et al27 studies (for which 

the age was at least 57 and older). As a result, our findings may be more generalizable to US 

adults (18 or older), rather than only adults 57 and older as in these previous studies.

The literature also suggests positive associations between ozone and diabetes mortality.45–48 

However, because deaths among diabetics often result from comorbidities, such as CVD, 

diabetes is not often listed as the primary cause of death.3 Thus, analyses utilizing 

mortality from diabetes may underestimate diabetes burden and potentially attenuate 
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reported associations with risk factors such as air pollution. To our knowledge, this is the 

first study to explore the association between ambient ozone concentrations and diabetes 

prevalence in the US.

We provide some evidence of regional differences in the association between annual county-

level estimates of PM2.5 with diabetes prevalence, which could be due to regional variations 

in the composition of PM2.5.12 Previously, using the National Climatic Data Center’s nine 

US regions, Chien et al35 found increases in PM2.5 led to the greatest spatial vulnerability 

of diabetes prevalence in the South, Central, and Southeast regions. Despite the more 

parsimonious regional classification used in the current study, it should nonetheless capture 

potential regional differences in PM2.5 composition.65,66 Additionally, the National Climatic 

Data Center regions identified as spatially vulnerable areas overlap with portions of the 

US Census Bureau’s Midwest region where we found the strongest regional association 

between county-level PM2.5 concentrations and diabetes prevalence. In the current study, 

although estimates of the association between ozone and diabetes prevalence were larger in 

the Northeast and Midwest, given the small effect sizes, the importance of these observed 

differences remains unclear.

While we found a positive association between both PM2.5 and ozone with diabetes, 

sensitivity analyses revealed similar, but more precise associations when we applied county-

level weights to the fully-adjusted model. Weights used in BRFSS are intended to ensure 

that minorities and certain age and sex groups are accurately represented in the produced 

estimates since these populations are generally under-sampled.50 Given that the current 

study spanned multiple years and no weights exist for the combined population used in 

this study, new calculated county-level weights for the BRFSS data were created based on 

recommendations from BRFSS personnel.61 However, because we also used exposure data 

external to BRFSS, there is still some uncertainty regarding the correct application of these 

population weights. As a result, the weighted associations may have been exaggerated or 

attenuated, while the internal validity of the results using the unweighted models remains 

unaffected. Our sensitivity analyses also provided no indication that CVD acted as a 

confounder of the associations between either PM2.5 or ozone and diabetes. Similarly, 

adding the pre-diabetes group to the analyses did not change the results; however, this may 

be due to the small number of individuals who identified as pre-diabetic. Additionally, the 

multipollutant model did not reveal appreciable changes to the single-pollutant estimates, 

indicating that associations between PM2.5 and diabetes prevalence is not likely driving 

the small association observed with ozone. For PM2.5, stratification by sex, race, and 

age revealed stronger, positive associations among males, Asians, and 55 to 64 year olds, 

respectively. For ozone, stratification by sex and age revealed slightly stronger associations 

among females and 35 to 44 year olds, respectively. While there was no difference in the 

estimates between race groups of White, Black, or Other; the association between ozone 

and diabetes was nearest the null among Asians. For both PM2.5 and ozone, stratification by 

sex, race, and age revealed little evidence that effect modification of the association between 

PM2.5 and ozone with diabetes was present.

The present analysis had several limitations. Given the cross-sectional design of the 

currently study, temporality cannot be established and, as a result, the current study cannot 
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suggest a causal relationship between PM2.5 and ozone with diabetes. Additionally, SMART 

BRFSS does not differentiate between Type 1 and Type 2 diabetes. However, at least 95% 

of all diabetes cases are Type 2 diabetes3 and thus, it is likely that our results reflect 

associations between ambient PM2.5 and ozone with Type 2 diabetes. It is possible that 

prevalence of diabetes was underreported in BRFSS since data on prescription medication 

use (eg, metformin or insulin) and fasting glucose data for diabetes were not available67,68 

and participants may have been unaware of their diabetes status. Because our study relies 

on self-reported diabetes status, outcome misclassification is also possible. Schneider et 

al68 found excellent specificity (more than 95%) and moderate sensitivity (59% to 71%) 

between self-reported diabetes and various levels of fasting blood glucose among a subset 

of participants from the Atherosclerosis Risk in Communities (ARIC) study. Additionally, 

Okura et al69 reported substantial agreement (κ = 0.76; 95% CI = 0.70, 0.82) between 

self-reported diabetes status with medical records; however, Okura et al also stated their 

population may only be reflective of those with healthcare access. Healthcare access may 

play a role in the accuracy of self-reported diabetes status.70,71 Zhang et al71 and Selvin et 

al70 identified lack of healthcare access and insurance coverage as key factors that contribute 

to undiagnosed cases of type 2 diabetes. In our study, 89% (n = 946,111) of participants 

reported having at least some kind of health care insurance and 85% (n = 905,780) reported 

having a doctor; thus, the majority of participants appear to have healthcare access. Because 

self-report of diabetes substantially agrees with medical diagnoses of diabetes,69 we are 

confident that misclassification in 85% to 89% of our study population that have access 

to healthcare, if any, is minor. Still, some misclassification of diabetes among participants 

with no access to healthcare in the current study is possible, and more likely it would 

underestimate prevalent cases of diabetes.

Also, exercise was measured based on the past month and only recorded as a dichotomous 

yes/no variable which could result in residual confounding. Because SMART BRFSS only 

includes data for large, urban counties in the United States,49,51 the results of this study may 

not be generalizable to less populated, rural areas. The BRFSS data from 2002 to 2008 were 

collected via random-digit dialing of landline phones, excluding individuals with wireless 

only service (estimated to be less than 20% from 2003 to 2008) as well as an estimated 

2% of individuals with no landline or cellphone service (data on wireless only service were 

not available for 2002).72 Compared with individuals using landline telephones, individuals 

who rely only on wireless phone service may be younger, Hispanic, male, and living in 

poverty,72,73 potentially introducing coverage bias. However, given the small percentage of 

individuals who relied on wireless only, we believe potential effects of coverage bias on 

our estimates are small. Because non-whites, younger individuals, and those who are less 

educated are less likely to respond to telephone surveys than their counterparts,74–76 survey 

non-response bias is also possible.

County-level exposure estimates used in the present study were obtained from an air 

pollution model which combines AQS monitoring data with CMAQ modeled data. However, 

ambient measures may not accurately reflect personal exposure. In a study conducted in 

Boston, MA, Brown et al. found seasonal variation played a role in the correlation between 

personal and ambient measures of PM2.5.77 For PM2.5, in the winter, ambient measures did 

not accurately reflect personal measures (median ρ=0.3), but in the summer the correlation 
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between the two measures improved (median ρ = 0.6). Brown et al77 attributed the majority 

of these differences to seasonal changes in ventilation, but noted that the correlation could 

be influenced by personal behaviors. Additionally, in the winter, Brown found that the 

geometric mean (GM) of ambient measures was lower than personal measures (ambient: 

GM = 8.5 μg/m3; geometric standard deviation (GSD) = 1.8 μg/m3; personal: GM = 10.4 

μg/m3; GSD = 1.8 μg/m3), but in the summer, ambient measures were higher (GM = 10.7 

μg/m3; GSD = 1.6 μg/m3) than personal measures (GM = 8.5 μg/m3; GSD = 1.7 μg/m3). In 

a meta-analysis including 18 studies conducted by Avery et al,78 the findings were similar 

(r = 0.54; standard deviation = 0.12) with increased correlation among studies with higher 

mean ambient PM2.5, studies conducted in eastern North America, and areas with higher 

humidity. Given the varied results regarding agreement between ambient and personal PM2.5 

exposures, the direction of the bias of the effect estimate in the current study cannot be 

determined.

Studies investigating the association between ambient and personal measures of ozone also 

have differing results. In a study conducted in Boston, MA, Brown et al79 did not find an 

association between personal and ambient measures of ozone during winter (β = −0.01; 

95% CI = −0.14, 0.12); however, a small, but significant association was found during 

the summer months (β = 0.25; 95% CI = 0.14, 0.35). During the summer, the association 

was also increased with increased ventilation (windows open: β = 0.29; 95% CI = 0.19, 

0.39; high air exchange rate: β = 0.30; 95% CI = 0.20, 0.40).79 Dimakopoulou et al80 also 

investigated the association between personal and ambient measures of ozone (from fixed 

monitoring sites) among school children in Athens and Thessaloniki, Greece and found 

a positive, significant association between personal and ambient measures of ozone (β = 

0.042 95% CI = 0.007, 0.078). Given the different associations found between personal and 

ambient measures in the two studies, it is possible that ambient measures of ozone may not 

accurately reflect personal measures. Since ambient concentrations were higher as compared 

with personal measurements in both studies, it is possible that our estimates for ozone could 

be exaggerated.

Additionally, although the Downscaler approach is an improvement upon using AQS or 

CMAQ data alone, the Downscaler estimates may not be equivalent to monitoring data, 

particularly in areas where monitoring data are sparse.53 As a result, in the current study, 

estimates of PM2.5 and ozone using the Downscaler model may have more uncertainty in 

areas with fewer monitors. Due to the limitations of the Downscaler model, measurement 

error is possible. However, this error is expected to result in non-differential information 

bias.

County-level exposure data may not accurately reflect personal exposures. Large urban 

areas may have higher variability in particulate matter concentrations than rural areas,81,82 

resulting in varied within-county, individual-level exposures. Individual mobility patterns 

are also not accounted for. However, because ambient air pollution interventions are likely 

to happen at the group-level (eg, policies are generally enacted by municipalities such as 

counties) rather than at the individual-level, the results of this study may still be used to 

inform community-level prevention and intervention efforts, even if they do not address the 

individual exposure–outcome response.
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Our study provides evidence of moderate associations between area-level particulate matter 

and ozone with diabetes prevalence. While our results regarding PM2.5 are consistent 

with previous studies, our finding of a potential association between ambient ozone 

concentrations and diabetes prevalence is a novel one, though the strength of the association 

was weak. Even so, further examination is warranted. While evidence regarding the 

contribution of air pollution to diabetes burden in this country is mounting, lifestyle and 

diet remain primary determinants, although these could be influenced by place-based factors 

such as the built environment, availability and accessibility to healthy foods, as well as 

economic and health policies, at national and local levels. Although lifestyle and diet are 

important individual determinants, focusing on initiatives that address determinants of health 

at a community-level, such as reducing air pollution, provides a greater opportunity for a 

more sustainable, far-reaching impact on reducing the diabetes burden in the population. 

Additionally, our findings regarding regional differences in the associations between PM2.5 

and ozone concentrations and diabetes prevalence highlight the need for future research 

opportunities. One aspect in which future studies should focus is the identification of 

specific PM2.5 components that may be driving the association with diabetes and their 

effects on human health.
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Learning Objectives

• Become familiar with previously reported associations of diabetes with air 

pollution, specifically fine particulate matter (PM2.5) and ozone.

• Summarize the new findings on the associations between PM2.5 and ozone 

and diabetes in US adults.

• Discuss the study implications for efforts to reduce air pollution as part of 

policies to alleviate the US burden of diabetes.
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FIGURE 1. 
Median (IQR) annual county-level average estimates of daily PM2.5 concentrations (μg/m3) 

among contiguous US and SMART BRFSS counties within US Census Bureau regions, 

2002 to 2008.
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FIGURE 2. 
Median (IQR) annual county-level average estimates of daily 8-hour maximum ozone 

concentrations (ppb) among contiguous US and SMART BRFSS counties within US Census 

Bureau regions, 2002 to 2008.
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TABLE 1.

Characteristics of Individuals in SMART BRFSS Counties* (n = 372) by Prevalent Diabetes Status, 2002–

2008

Characteristic
n (%)

n = 1,061,081
Diabetes

n = 97,466

Gender

 Female 656,184 (61.8) 57,305 (58.8)

 Male 404,897 (38.2) 40,161 (41.2)

 Missing 0 (0.0) 0 (0.0)

Age

 18–34 190,512 (18.0) 2,914 (3.0)

 35–44 192,678 (18.2) 7,093 (7.3)

 45–54 217,571 (20.5) 16,269 (16.7)

 55–64 190,865 (18.0) 26,059 (26.7)

 ≥65 258,827 (24.4) 44,316 (45.5)

 Missing 10,628 (1.0) 815 (0.8)

Race

 White 863,046 (81.3) 73,074 (75.0)

 Black 107,765 (10.2) 15,823 (16.2)

 Asian 18,480 (1.7) 1,079 (1.1)

 Other 59,662 (5.6) 6,239 (6.4)

 Missing 12,128 (1.1) 1,251 (1.3)

Ethnicity

 Non-Hispanic 974,221 (91.8) 88,772 (91.1)

 Hispanic 82,094 (7.7) 8,075 (8.3)

 Missing 4,766 (0.5) 619 (0.6)

Education

 >High School 682,125 (64.3) 50,432 (51.7)

 High School or GED 284,026 (26.8) 31,404 (32.2)

 <High School 91,865 (8.7) 15,253 (15.7)

 Missing 3,065 (0.3) 377 (0.4)

Annual household income

 ≥$75,000 263,190 (24.8) 12,154 (12.5)

 $50,000–$74,999 160,009 (15.1) 10,822 (11.1)

 $35,000–$49,999 146,176 (13.8) 12,427 (12.8)

 <$35,000 347,788 (32.8) 47,031 (48.3)

 Missing 143,918 (13.6) 15,032 (15.4)

Smoking status

 Never 561,789 (52.9) 44,715 (45.9)

 Former 303,864 (28.6) 37,537 (38.5)

 Current 191,099 (18.0) 14,752 (15.1)

 Missing 4,329 (0.4) 462 (0.5)
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Characteristic
n (%)

n = 1,061,081
Diabetes

n = 97,466

BMI (kg/m2)

 <18.50 17,468 (1.7) 628 (0.6)

 18.50–24.99 383,768 (36.2) 14,919 (15.3)

 25.00–29.99 365,092 (34.4) 30,670 (31.5)

 ≥30.00 242,300 (22.8) 45,680 (46.9)

 Missing 52,453 (4.9) 5,569 (5.7)

Exercise

 No 255,005 (24.03) 37,809 (38.79)

 Yes 805,076 (75.87) 59,520 (61.07)

 Missing 1,000 (0.09) 137 (0.14)

Asthma

 No 962,133 (90.7) 84,532 (86.7)

 Yes 92,802 (8.7) 12,210 (12.5)

 Missing 6,146 (0.6) 724 (0.8)

 No 714,552 (87.9) 55,501 (69.7)

CVD
†

 Yes 81,161 (10.0) 22,024 (27.6)

 Missing 17,290 (2.1) 2,156 (2.7)

BMI, body mass index; BRFSS, behavioral risk factor surveillance system; CVD, cardiovascular disease; SMART, selected metropolitan/
micropolitan area risk trends.

*
Only available for all states from 2004 to 2008.

†
Only available for six states in 2002, 20 states in 2003, nine states in 2004, and all states 2005–2008.
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TABLE 2.

Association of Annual County-Level Average Estimates of PM2.5 (μg/m3) and Ozone (ppb) Concentrations 

With Prevalent Diabetes in 372 SMART BRFSS Counties (n = 862,519), 2002–2008

PM2.5 Ozone

Model PR* (95% CI) PR* (95% CI)

Initial
† 1.32 (1.19, 1.47) 1.05 (0.98, 1.12)

Fully-adjusted
† 1.10 (1.03, 1.17) 1.06 (1.03, 1.09)

BRFSS, behavioral risk factor surveillance system; CI, confidence interval; CVD, cardiovascular disease; PM, particulate matter; ppb, parts per 
billion; PR, prevalence ratio; SMART, selected metropolitan/micropolitan area risk trends.

*
Per 10 unit increase in PM2.5 (μg/m3) or ozone (ppb).

†
Adjusted for year.

‡
Adjusted for year, age, sex, race, ethnicity, education, annual household income, smoking status, body mass index, exercise and asthma.
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TABLE 4.

Stratification by Sex, Race, and Age for the Adjusted Association of Annual County-Level Average Estimates 

of PM2.5 (μg/m3) and Ozone (ppb) Concentrations With Prevalent Diabetes Among SMART BRFSS Counties

PM2.5 Ozone

PR* 95%CI PR* 95%CI

Gender
†

 Male 1.13 1.05, 1.21 1.05 1.01, 1.09

 Female 1.07 1.00, 1.15 1.07 1.03, 1.10

Race
‡

 White 1.14 1.07, 1.22 1.06 1.03, 1.10

 Black 0.9 0.81, 1.00 1.06 1.00, 1.11

 Asian 1.26 0.95, 1.69 0.99 0.88, 1.11

 Other 0.93 0.81, 1.06 1.06 0.99, 1.13

Age
§

 18–34 1.22 1.02, 1.47 1.07 0.97, 1.19

 35–44 1.02 0.89, 1.17 1.09 1.02, 1.16

 45–54 1.12 1.02, 1.22 1.06 1.01, 1.11

 55–64 1.19 1.10, 1.29 1.02 0.98, 1.06

 ≥65 1.07 1.00, 1.14 1.05 1.02, 1.09

*
Per 10-unit increase in PM2.5 (μg/m3) or ozone (ppb).

†
Adjusted for year, age, race, ethnicity, education, annual household income, smoking status, body mass index, exercise, and asthma.

‡
Adjusted for year, age, sex, ethnicity, education, annual household income, smoking status, body mass index, exercise, and asthma.

§
Adjusted for year, sex, race, ethnicity, education, annual household income, smoking status, body mass index, exercise, and asthma.
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TABLE 5.

Weighted Association of Annual County-Level Average Estimates of PM2.5 (μg/m3) and Ozone (ppb) 

Concentrations With Prevalent Diabetes in 372 SMART BRFSS Counties* (n = 862,519), 2002–2008

Model

Diabetes

PR
†
 (95% CI)

PM2.5 Initial
‡ 1.21 (1.11, 1.31)

Fully-adjusted
§ 1.05 (0.98, 1.13)

Ozone Initial
‡ 1.02 (0.97, 1.08)

Fully-adjusted
§ 1.08 (1.04, 1.12)

BRFSS, behavioral risk factor surveillance system; CI, confidence interval; CVD, cardiovascular disease; PM, particulate matter; ppb, parts per 
billion; PR, prevalence ratio; SMART, selected metropolitan/micropolitan area risk trends.

*
Unique counties between 2002 and 2008.

†
Per 10 unit increase in PM2.5 (μg/m3) or ozone (ppb).

‡
Adjusted for year.

§
Adjusted for year, age, sex, race, ethnicity, education, annual household income, smoking status, body mass index, exercise, and asthma.
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